
© 2025 SHL and/or its affiliates. All rights reserved.. 1/28

Sumehar Singh Grewal
Test ID:
 450015228581986
 8360645330
 sumeharsinghgrewal@gmail.com

Test Date: November 29, 2025

Computer Science

77
/100

Logical Ability

56
/100

Computer Programming

59
/100

Quantitative Ability
(Advanced)

48
/100

English Comprehension

64
/100

Automata Fix

58
/100

Automata Pro

51
/100

Personality

Completed

Computer Science
 77
/ 100

OS and Computer Architecture

DBMS

Computer Networks

65
/ 100 95
/ 100 89
/ 100

Logical Ability
 56
/ 100

Inductive Reasoning

Deductive Reasoning

Abductive Reasoning

51
/ 100 61
/ 100 55
/ 100

Computer Programming
 59
/ 100

Basic Programming

Data Structures

OOP and Complexity Theory

57
/ 100 63
/ 100 58
/ 100

© 2025 SHL and/or its affiliates. All rights reserved.. 2/28

Quantitative Ability (Advanced)
 48
/ 100

Basic Mathematics

Advanced Mathematics

Applied Mathematics

44
/ 100 49
/ 100 50
/ 100

English Comprehension
 CEFR:
B264
/ 100

Grammar

Vocabulary

Comprehension

65
/ 100 61
/ 100 66
/ 100

Automata Fix
 58
/ 100

Logical Error

Code Reuse

Syntactical Error

75
/ 100 0
/ 100 100
/ 100

Automata Pro
 51
/ 100

Programming Practices

Functional Correctness

100
/ 100 29
/ 100

© 2025 SHL and/or its affiliates. All rights reserved.. 3/28

Personality Completed

People Interaction

Self-Drive

Trainability

Repetitive Job Suitability

Work attributes
Competencies

100

80

60

40

20

0

Extraversion

Conscientiousness

Agreeableness

Openness
to

Experience

Emotional
Stability

Polychronicity

50

99

56
63

99

1

© 2025 SHL and/or its affiliates. All rights reserved.. 4/28

1 Introduction

About the Report

This report provides a detailed analysis of the candidate's performance on different assessments. The tests for this
job role were decided based on job analysis, O*Net taxonomy mapping and/or criterion validity studies. The
candidate’s responses to these tests help construct a profile that reflects her/his likely performance level and
achievement potential in the job role

This report has the following sections:

The Summary section provides an overall snapshot of the candidate’s performance. It includes a graphical
representation of the test scores and the subsection scores.

The Insights section provides detailed feedback on the candidate’s performance in each of the tests. The descriptive
feedback includes the competency definitions, the topics covered in the test, and a note on the level of the
candidate’s performance.

The Response section captures the response provided by the candidate. This section includes only those tests that
require a subjective input from the candidate and are scored based on artificial intelligence and machine learning.

The Learning Resources section provides online and offline resources to improve the candidate's knowledge, abilities,
and skills in the different areas on which s/he was evaluated.

Score Interpretation

All the test scores are on a scale of 0-100. All the tests except personality and behavioural evaluation provide
absolute scores. The personality and behavioural tests provide a norm-referenced score and hence, are percentile
scores. Throughout the report, the colour codes used are as follows:

70 ≤ Score < 100

30 ≤ Score < 70

0 ≤ Score < 30

© 2025 SHL and/or its affiliates. All rights reserved.. 5/28

2 Insights

English Comprehension
 CEFR:
B2

This test aims to measure your vocabulary, grammar and reading comprehension skills.

You have a good understanding of commonly used grammatical constructs. You are able to read and understand
articles, reports and letters/mails related to your day-to-day work. The ability to read, understand and interpret
business-related documents is essential in most jobs, especially the ones that involve research, technical reading and
content writing.

Logical Ability

Inductive Reasoning

This competency aims to measure the your ability to synthesize information and derive conclusions.

You are able to work out rules based on specific information and solve general work problems using
these rules. This skill is required in data-driven research jobs where one needs to formulate new rules
based on variable trends.

Deductive Reasoning

This competency aims to measure the your ability to synthesize information and derive conclusions.

It is commendable that you have excellent inductive reasoning skills. You are able to make specific
observations to generalize situations and also formulate new generic rules from variable data.

Abductive Reasoning

Quantitative Ability (Advanced)

This test aims to measure your ability to solve problems on basic arithmetic operations, probability, permutations and
combinations, and other advanced concepts.

You are good at basic arithmetic. You are able to solve real-world problems that involve simple addition, subtraction,
multiplication and division.

Personality

64
/ 100

56
/ 100

51
/ 100

61
/ 100

55
/ 100

48
/ 100

© 2025 SHL and/or its affiliates. All rights reserved.. 6/28

Competencies

Extraversion

Extraversion refers to a person's inclination to prefer social interaction over spending time alone.
Individuals with high levels of extraversion are perceived to be outgoing, warm and socially confident.

• You are comfortable socializing to a certain extent. You prefer small gatherings in familiar
environments.

• You feel at ease interacting with your close friends but may be reserved among strangers.
• You indulge in activities involving thrill and excitement that are not too risky.
• You contemplate the consequences before expressing any opinion or taking an action.
• You take charge when the situation calls for it and you are comfortable following instructions as

well.
• Your personality may be suitable for jobs demanding flexibility in terms of working well with a

team as well as individually.

Conscientiousness

Conscientiousness is the tendency to be organized, hard working and responsible in one's approach to
your work. Individuals with high levels of this personality trait are more likely to be ambitious and
tend to be goal-oriented and focused.

• You value order and self discipline and tends to pursue ambitious endeavours.
• You believe in the importance of structure and is very well-organized.
• You carefully review facts before arriving at conclusions or making decisions based on them.
• You strictly adhere to rules and carefully consider the situation before making decisions.
• You tend to have a high level of self confidence and do not doubt your abilities.
• You generally set and work toward goals, try to exceed expectations and are likely to excel in

most jobs, especially those which require careful or meticulous approach.

50

Reserved Sociable

99

Spontaneous Diligent

© 2025 SHL and/or its affiliates. All rights reserved.. 7/28

Agreeableness

Agreeableness refers to an individual's tendency to be cooperative with others and it defines your
approach to interpersonal relationships. People with high levels of this personality trait tend to be
more considerate of people around them and are more likely to work effectively in a team.

• You are flexible regarding your opinions and be willing to accommodate the needs of others.
• You are generally considerate of the needs of others yet may, at times, overlook social norms to

achieve personal success.
• You are selective about the people you choose to trust.
• You are caring and you empathise a friend in distress.
• You give credit to others but also tends to be open with your friends about personal

achievements.
• You are more inclined to strike a compromise in tough situations and may be suitable for jobs

that demand managing expectations among different stakeholders.

Openness to Experience

Openness to experience refers to a person's inclination to explore beyond conventional boundaries in
different aspects of life. Individuals with high levels of this personality trait tend to be more curious,
creative and innovative in nature.

• You may try new things but would prefer not to venture too far beyond your comfort zone.
• You tend to be open to accepting abstract ideas after weighing them against existing solutions.
• You appreciate the arts to a certain extent but may lack the curiosity to explore them in depth.
• You may express your feelings only to people you are comfortable with.
• Your personality is more suited for jobs involving a mix of logical and creative thinking.

Emotional Stability

Emotional stability refers to the ability to withstand stress, handle adversity, and remain calm and
composed when working through challenging situations. People with high levels of this personality trait
tend to be more in control of their emotions and are likely to perform consistently despite difficult or
unfavourable conditions.

• You are calm and composed in nature.
• You tend to maintain composure during high pressure situations.
• You are very confident and comfortable being yourself.
• You find it easy to resist temptations and practice moderation.
• You are likely to remain emotionally stable in jobs with high stress levels.

56

Competitive Cooperative

63

Conventional Inquisitive

99

Sensitive Resilient

© 2025 SHL and/or its affiliates. All rights reserved.. 8/28

Polychronicity

Polychronicity refers to a person's inclination to multitask. It is the extent to which the person prefers
to engage in more than one task at a time and believes that such an approach is highly productive.
While this trait describes the personality disposition of a person to multitask, it does not gauge their
ability to do so successfully.

• You prefer to work on one task at a time, complete it and then move on to the next.
• You prefer orderliness and likes to concentrate on the task at hand without any distractions.
• You can find it difficult to be placed in a work environment where there is a need to multitask or

where expected to engage in multiple projects simultaneously.

1

Focused Multitasking

© 2025 SHL and/or its affiliates. All rights reserved.. 9/28

3 Response

Question 1 (Language: C++20)

A child's parent goes for a jog every morning. The child follows the parent several minutes later. The parent starts at a
position that is X meters away from their home and runs in a straight line at a constant speed of V meters per step for
N steps.

The child is standing X metres away from their home. They wonder how fast they must run at a constant speed of
V metres per step to achieve a maximum F, where F equals the number of their parent's footsteps that the child will
land on during their run. The first step that the child will land on from their starting position will have been landed on
by their parent.

Note that, if more than one prospective speed results in the same number of maximum common steps, output the
highest prospective speed as V .

Write an algorithm to calculate F and V .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code: O(N logN)

*N represents number of steps for which father runs.

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

Automata Pro
 Code Replay51
/ 100

1 1

2

2

2

2

Scores

Programming Practices

High readability, high on program structure. The source code is
readable and does not consist of any significant
redundant/improper coding constructs.

100 / 100

Functional Correctness

Partially correct basic functionality. The source code compiles and
passes only some of the basic test cases. Some advanced or edge
cases may randomly pass.

36 / 100

Final Code Submitted Compilation Status: Pass

// Sample code to read input and write output:

/*

#include <iostream>

using namespace std;

int main()

{

 char name[20];

 cin >> name; // Read input from STDIN

 cout << "Hello " << name; // Write output to STDOUT

 return 0;

}

*/

https://employer.aspiringminds.com/playback/5TkcpkeY4+ZtiQFU1DgH4KqVAK1yM3fPVAms4cPTJZw=&version=2?langCode=en

© 2025 SHL and/or its affiliates. All rights reserved.. 10/28

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Readability & Language Best Practices

Line 31: Variables are given very short name.

Test Case Execution Passed TC: 50%

Total score

 5/10
83%

Basic(5/6)

0%
Advance(0/3)

0%
Edge(0/1)

// Warning: Printing unwanted or ill-formatted data to output will c

ause the test cases to fail

#include <iostream>

using namespace std;

int main()

{

 // Write your code here

 int parentPos,childPos,velParent,steps;

 cin>>parentPos;

 cin>>childPos;

 cin>>velParent;

 cin>>steps;

 int f,velChild;

 if((parentPos-childPos)==velParent)

 {

 f = ((steps*velParent)+(velParent))/velParent;

 velChild = velParent;

 cout<<f<<" "<<velChild;

 }

 else if(parentPos-childPos==1){

 f = steps+1;

 velChild = 1;

 cout<<f<<" "<<velChild;

 }

 else{

 f = 1;

 velChild = (velParent*steps+parentPos)-childPos;

 cout<<f<<" "<<velChild;

 }

 return 0;

}

© 2025 SHL and/or its affiliates. All rights reserved.. 11/28

Compilation Statistics

3

Total attempts

3

Successful

0

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:29:21

Average time taken between two compile attempts: 00:09:47

Average test case pass percentage per compile: 36.67%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 2 (Language: C++20)

A square matrix A[1..n][1..n] is called palindromic if A[i][j] = A[n + 1 - i][n + 1 - j] for all 1 ≤ i, j ≤ n.

Given a matrix inputMat[1..N][1..M], find the number of elements in its largest palindromic square sub-matrix.

Scores

Programming Practices

High readability, high on program structure. The source code is
readable and does not consist of any significant
redundant/improper coding constructs.

100 / 100

Functional Correctness

Partially correct basic functionality. The source code compiles and
passes only some of the basic test cases. Some advanced or edge
cases may randomly pass.

22 / 100

© 2025 SHL and/or its affiliates. All rights reserved.. 12/28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code: O(N)

*N represents number of rows or number of columns

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

Readability & Language Best Practices

Line 26: Variables are given very short name.

Final Code Submitted Compilation Status: Pass

// Sample code to read input and write output:

/*

#include <iostream>

using namespace std;

int main()

{

 char name[20];

 cin >> name; // Read input from STDIN

 cout << "Hello " << name; // Write output to STDOUT

 return 0;

}

*/

// Warning: Printing unwanted or ill-formatted data to output will c

ause the test cases to fail

#include <iostream>

using namespace std;

int main()

{

 // Write your code here

 int n,m;

 cin>>n>>m;

 int matrix[n][m];

 for(int i=0;i<n;i++)

 {

 for(int j=0;j<m;j++)

 {

 cin>>matrix[i][j];

 }

 }

 int count=0;

 int maxi=0;

 if(n<m){

 maxi = m;

 }

 else{

 maxi =n;

 }

 for(int i=0;i<n;i++)

 {

 for(int j=0;j<m;j++)

 {

 if(matrix[i][j]==matrix[maxi-3-i][maxi-3-j])

2

© 2025 SHL and/or its affiliates. All rights reserved.. 13/28

49

50

51

52

53

54

55

56

Test Case Execution Passed TC: 15.38%

Total score

 2/13
14%

Basic(1/7)

20%
Advance(1/5)

0%
Edge(0/1)

Compilation Statistics

10

Total attempts

9

Successful

1

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:29:50

Average time taken between two compile attempts: 00:02:59

Average test case pass percentage per compile: 11.54%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

 {

 count++;

 }

 }

 }

 cout<<count;

 return 0;

}

© 2025 SHL and/or its affiliates. All rights reserved.. 14/28

Question 1 (Language: C++)

The function/method manchester print space-separated integers with the following property: for each element in the
input array arr, a counter is incremented if the bit arr[i] is the same as arr[i-1]. Then the increment counter value is
added to the output array to store the result.
If the bit arr[i] and arr[i-1] are different, then 0 is added to the output array. For the first bit in the input array,
assume its previous bit to be 0. For example, if arr is {0,1,0,0,1,1,1,0}, the function/method should print 1 0 0 2 0 3
4 0.

The function/method manchester accepts two arguments- size, an integer representing the length of the input
array; arr, a list of integers representing an input array. Each element of arr represents a bit, 0 or 1.

The function/method manchester compiles successfully but fails to print the desired result for some test cases due to
logical errors. Your task is to fix the code so that it passes all the test cases.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Automata Fix
 Code Replay58
/ 100

Scores

Final Code Submitted Compilation Status: Pass

#include<iostream>

using namespace std;

void manchester(int size, int* arr)

{

 bool result;

 int count =0;

 int* res = new int[size];

 for(int i = 0; i < size; i++)

 {

 if(i==0)

 result= (arr[i]==1);

 else

 result = (arr[i]==arr[i-1]);

 res[i] = (result)?(0):(++count);

 }

 for(int i=0; i<size; i++)

 {

 cout<<res[i]<<" ";

 }

}

https://employer.aspiringminds.com/playback/5TkcpkeY4+ZtiQFU1DgH4KqVAK1yM3fPVAms4cPTJZw=&version=2?langCode=en

© 2025 SHL and/or its affiliates. All rights reserved.. 15/28

Test Case Execution Passed TC: 14.29%

Total score

 1/7
0%

Basic(0/5)

0%
Advance(0/1)

100%
Edge(1/1)

Compilation Statistics

3

Total attempts

3

Successful

0

Compilation errors

3

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:05:52

Average time taken between two compile attempts: 00:01:57

Average test case pass percentage per compile: 0%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 2 (Language: C++)

The function/method printFibonacci accepts an integer num, representing a number.
The function/method printFibonacci prints first num numbers of the Fibonacci series.
For example, given input 5, the function should print the string “0 1 1 2 3” (without quotes).

The function/method compiles successfully but fails to give the desired result for some test cases. Your task is to
debug the code so that it passes all the test cases.

© 2025 SHL and/or its affiliates. All rights reserved.. 16/28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Test Case Execution Passed TC: 100%

Total score

 8/8
100%
Basic(5/5)

100%
Advance(2/2)

100%
Edge(1/1)

Compilation Statistics

3

Total attempts

3

Successful

0

Compilation errors

2

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:01:48

Average time taken between two compile attempts: 00:00:36

Average test case pass percentage per compile: 33.3%

Scores

Final Code Submitted Compilation Status: Pass

#include<iostream>

using namespace std;

void printFibonacci(int num)

{

 long num1 = 0;

 long num2 = 1;

 for (int i = 1; i <= num; ++i)

 {

 cout<<num1<<" ";

 long sum = num1 + num2;

 num1 = num2;

 num2 = sum;

 }

}

© 2025 SHL and/or its affiliates. All rights reserved.. 17/28

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 3 (Language: C++)

The function/method reverseHalfArray modify the input list by reversing the input list from the second half.
For example, if the inputList is [20, 30, 10, 40, 50], the function/method is expected to modify the inputList like [20,
30, 50, 40, 10].

The function/method reverseHalfArray accepts two arguments - size, an integer representing the size of the list and
inputList, a list of integers representing the given input list, respectively.

The function/method compiles successfully but fails to get the desired result for some test cases. Your task is to debug
the code so that it passes all the test cases.

1

2

3

4

5

6

7

8

9

10

11

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

Scores

Final Code Submitted Compilation Status: Pass

void reverseHalfArray(int size, int *inputList)

{

 int i, temp;

 for(i=size/2; i< size ; i++)

 {

 temp = inputList[size-1];

 inputList[size-1] = inputList[i];

 inputList[i] = temp;

 size -= 1;

 }

}

© 2025 SHL and/or its affiliates. All rights reserved.. 18/28

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Test Case Execution Passed TC: 100%

Total score

 8/8
100%
Basic(4/4)

100%
Advance(2/2)

100%
Edge(2/2)

Compilation Statistics

2

Total attempts

2

Successful

0

Compilation errors

1

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:00:59

Average time taken between two compile attempts: 00:00:30

Average test case pass percentage per compile: 50%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 4 (Language: C++)

The function/method printPattern accepts an argument num, an integer.

© 2025 SHL and/or its affiliates. All rights reserved.. 19/28

The function/method printPattern print the first num lines of the pattern as shown below.
For example, if num = 3, the pattern should be:
1 1
2 2 2 2
3 3 3 3 3 3

The function/method printPattern compiles successfully but fails to print the desired result for some test cases. Your
task is to debug the code so that it passes all the test cases.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Test Case Execution Passed TC: 100%

Total score

 8/8
100%
Basic(7/7)

0%
Advance(0/0)

100%
Edge(1/1)

Scores

Final Code Submitted Compilation Status: Pass

#include<iostream>

using namespace std;

void printPattern(int num)

{

 int i,j;

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=2*i;j++)

 {

 cout<<i<<" ";

 }

 cout<<"\n";

 }

}

© 2025 SHL and/or its affiliates. All rights reserved.. 20/28

Compilation Statistics

3

Total attempts

3

Successful

0

Compilation errors

2

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:01:43

Average time taken between two compile attempts: 00:00:34

Average test case pass percentage per compile: 33.3%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 5 (Language: C++)

You are given predefined structure Time containing hour, minute, and second as members. A collection of
functions/methods for performing some common operations on times is also available. You must make use of these
functions/methods to calculate and return the difference.

The function/method difference_in_times accepts two arguments - time1, and time2, representing two times and is
supposed to return an integer representing the difference in the number of seconds.

You must complete the code so that it passes all the test cases.

.

Helper Description

© 2025 SHL and/or its affiliates. All rights reserved.. 21/28

The following class is used to represent the time and is already implemented in the default code (Do not write this
definition again in your code):

class Time

{

 int hour;

 int minute;

 int second;

 int Time :: Time_compareTo(Time* time2)

 {

 /*Return 1, if time1 is greater than time2.

 Return -1 if time1 is less than time2

 or, Return 0, if time1 is equal to time2

 This can be called as -

 * If time1 and time2 are two Time then -

 * time1.compareTo(time2) */

 }

 void Time :: Time_addSecond()

 {

 /* Add one second in the time;

 This can be called as -

 * If time1 is Time then -

 * time1.addSecond() */

 }

1

2

3

4

5

6

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Scores

Final Code Submitted Compilation Status: Fail

// You can print the values to stdout for debugging

#include<iostream>

using namespace std;

int difference_in_times(Time *time1, Time *time2)

{

© 2025 SHL and/or its affiliates. All rights reserved.. 22/28

7

8

9

Best case code:

*N represents

Errors/Warnings

In file included from main_24.cpp:8:
source_24.cpp: In function 'int
difference_in_times(Time*, Time*)':
source_24.cpp:8:1: error: no return statement in
function returning non-void [-Werror=return-type]
}
^
cc1plus: some warnings being treated as errors

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Compilation Statistics

0

Total attempts

0

Successful

0

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:01:26

Average time taken between two compile attempts: 00:00:00

Average test case pass percentage per compile: 0%

 // write your code here

}

© 2025 SHL and/or its affiliates. All rights reserved.. 23/28

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 6 (Language: C++)

You are given a predefined structure/class Point and also a collection of related functions/methods that can be used to
perform some basic operations on the structure.

The function/method isRightTriangle returns an integer '1', if the points make a right-angled triangle otherwise return
'0'.
The function/method isRightTriangle accepts three points - P1, P2, P3 representing the input points.

You are supposed to use the given function to complete the code of the function/method isRightTriangle so that it
passes all test cases.

Helper Description
The following class is used to represent point and is already implemented in the default code (Do not write these
definitions again in your code):

class Point

{

 private:

 int X;

 int Y;

 double Point_calculateDistance(Point *point1, Point *point2)

 {

 /*Return the euclidean distance between two input points.

© 2025 SHL and/or its affiliates. All rights reserved.. 24/28

 This can be called as -

 * If P1 and P2 are two points then -

 * P1->Point_calculateDistance(P2);*/

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Code Analysis

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

In file included from main_23.cpp:8:
source_23.cpp: In function 'int isRightTriangle(Point*,
Point*, Point*)':
source_23.cpp:16:1: error: no return statement in
function returning non-void [-Werror=return-type]
}
^
cc1plus: some warnings being treated as errors

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Scores

Final Code Submitted Compilation Status: Fail

// You can print the values to stdout for debugging

#include<iostream>

using namespace std;

int isRightTriangle(Point *P1, Point *P2, Point *P3)

{

 // write your code here

double side1 = P1->Point_calculateDistance(P2);

double side2 = P2->Point_calculateDistance(P3);

double side3 = P3->Point_calculateDistance(P1);

if(side1+side2<side3||side1+side3<side2||side3+side2<side1)

{

}

}

© 2025 SHL and/or its affiliates. All rights reserved.. 25/28

Compilation Statistics

1

Total attempts

0

Successful

1

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:06:59

Average time taken between two compile attempts: 00:06:59

Average test case pass percentage per compile: 0%

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 7 (Language: C++)

The function/method replaceMinMax is supposed to replace all the even elements of the input list with the maximum
element of the list, also replace all the odd elements of arr with the minimum element of the list.

The function/method replaceMinMax accepts two arguments - size, an integer representing the size of the input list
and arr, a list of integers representing the input list.

The function/method replaceMinMax compiles unsuccessfully due to syntactical error. Your task is to debug the code so
that it passes all the test cases.

Code Analysis

Scores

Final Code Submitted Compilation Status: Pass

© 2025 SHL and/or its affiliates. All rights reserved.. 26/28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Average-case Time Complexity

Candidate code: Complexity is reported only when the code
is correct and it passes all the basic and advanced test
cases.

Best case code:

*N represents

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

There are no errors in the candidate's code.

Test Case Execution Passed TC: 100%

Total score

 10/10
100%
Basic(3/3)

100%
Advance(5/5)

100%
Edge(2/2)

Compilation Statistics

1

Total attempts

1

Successful

0

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:00:53

Average time taken between two compile attempts: 00:00:53

Average test case pass percentage per compile: 100%

// You can print the values to stdout for debugging

#include<iostream>

void replaceMinMax(int size, int* arr)

{

 int i=0;

 if(size>0)

 {

 int max = arr[0];

 int min = arr[0];

 for(i=0;i<size;++i)

 {

 if(max<arr[i])

 {

 max = arr[i];

 }

 else if(min > arr[i])

 {

 min = arr[i];

 }

 }

 for(i=0;i<size;++i)

 {

 if(arr[i] % 2 == 0)

 arr[i]=max;

 else

 arr[i]=min;

 }

 }

}

© 2025 SHL and/or its affiliates. All rights reserved.. 27/28

Average-case Time Complexity

Average Case Time Complexity is the order of performance of the algorithm given a random set of inputs. This complexity is measured
here using the Big-O asymptotic notation. This is the complexity detected by empirically fitting a curve to the run-time for different input
sizes to the given code. It has been benchmarked across problems.

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

© 2025 SHL and/or its affiliates. All rights reserved.. 28/28

4 Learning Resources

English Comprehension

Improve your hold on the language by reading Shakespearan plays

Learn about how to get better at reading

Read opinions to improve your comprehension

Logical Ability

Learn about validity of arguments

Practice Sherlock Holmes' puzzles and develop your deductive logic

Practice your Inductive Reasoning Skills!

Quantitative Ability (Advanced)

Learn about percentages

Learn about simple and compount interests

Watch a video on time, speed and distance

Icon Index

Free Tutorial Paid Tutorial Youtube Video Web Source

Wikipedia Text Tutorial Video Tutorial Google Playstore

http://www.opensourceshakespeare.org/views/plays/plays.php
http://www.amazon.com/How-Read-Better-Faster-Lewis/dp/8183070760
http://www.wsj.com/news/opinion
https://www.youtube.com/watch?v=nq-_LNHcSsg
http://dailybrainteaser.blogspot.in/2013/12/sherlock-holmes-riddles-questions.html
https://www.khanacademy.org/math/precalculus/seq_induction/deductive-and-inductive-reasoning/v/u12-l1-t3-we1-inductive-reasoning-1
https://www.khanacademy.org/math/pre-algebra/decimals-pre-alg/percent-intro-pre-alg/v/describing-the-meaning-of-percent
https://www.mathsisfun.com/money/interest.html
http://study.com/academy/lesson/distance-time-average-speed-practice-problems.html

